3.658 \(\int \frac {\sqrt {d+e x} (f+g x)^2}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=200 \[ -\frac {8 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )}{15 c^3 d^3 e \sqrt {d+e x}}+\frac {8 g \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{15 c^2 d^2 e}+\frac {2 (f+g x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d \sqrt {d+e x}} \]

[Out]

-8/15*(-a*e*g+c*d*f)*(2*a*e^2*g-c*d*(-d*g+3*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3/e/(e*x+d)^(1
/2)+2/5*(g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/(e*x+d)^(1/2)+8/15*g*(-a*e*g+c*d*f)*(e*x+d)^(1/2
)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/e

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {870, 794, 648} \[ \frac {8 g \sqrt {d+e x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{15 c^2 d^2 e}-\frac {8 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )}{15 c^3 d^3 e \sqrt {d+e x}}+\frac {2 (f+g x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x]*(f + g*x)^2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^3*d^3*e
*Sqrt[d + e*x]) + (8*g*(c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^2*d^2*
e) + (2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*c*d*Sqrt[d + e*x])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 870

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(m - n - 1)), x] - Dist[(n*(c*e*f + c*d*g
 - b*e*g))/(c*e*(m - n - 1)), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x} (f+g x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt {d+e x}}+\frac {\left (4 \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac {\sqrt {d+e x} (f+g x)}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{5 c d e^2}\\ &=\frac {8 g (c d f-a e g) \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac {2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt {d+e x}}-\frac {\left (4 (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{15 c^2 d^2 e}\\ &=-\frac {8 (c d f-a e g) \left (2 a e^2 g-c d (3 e f-d g)\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^3 d^3 e \sqrt {d+e x}}+\frac {8 g (c d f-a e g) \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac {2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 89, normalized size = 0.44 \[ \frac {2 \sqrt {(d+e x) (a e+c d x)} \left (8 a^2 e^2 g^2-4 a c d e g (5 f+g x)+c^2 d^2 \left (15 f^2+10 f g x+3 g^2 x^2\right )\right )}{15 c^3 d^3 \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x]*(f + g*x)^2)/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(8*a^2*e^2*g^2 - 4*a*c*d*e*g*(5*f + g*x) + c^2*d^2*(15*f^2 + 10*f*g*x + 3*g^2
*x^2)))/(15*c^3*d^3*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 123, normalized size = 0.62 \[ \frac {2 \, {\left (3 \, c^{2} d^{2} g^{2} x^{2} + 15 \, c^{2} d^{2} f^{2} - 20 \, a c d e f g + 8 \, a^{2} e^{2} g^{2} + 2 \, {\left (5 \, c^{2} d^{2} f g - 2 \, a c d e g^{2}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{15 \, {\left (c^{3} d^{3} e x + c^{3} d^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*c^2*d^2*g^2*x^2 + 15*c^2*d^2*f^2 - 20*a*c*d*e*f*g + 8*a^2*e^2*g^2 + 2*(5*c^2*d^2*f*g - 2*a*c*d*e*g^2)*
x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^3*d^3*e*x + c^3*d^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d} {\left (g x + f\right )}^{2}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)*(g*x + f)^2/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 116, normalized size = 0.58 \[ \frac {2 \left (c d x +a e \right ) \left (3 g^{2} x^{2} c^{2} d^{2}-4 a c d e \,g^{2} x +10 c^{2} d^{2} f g x +8 a^{2} e^{2} g^{2}-20 a c d e f g +15 f^{2} c^{2} d^{2}\right ) \sqrt {e x +d}}{15 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^2*(e*x+d)^(1/2)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

2/15*(c*d*x+a*e)*(3*c^2*d^2*g^2*x^2-4*a*c*d*e*g^2*x+10*c^2*d^2*f*g*x+8*a^2*e^2*g^2-20*a*c*d*e*f*g+15*c^2*d^2*f
^2)*(e*x+d)^(1/2)/c^3/d^3/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.61, size = 133, normalized size = 0.66 \[ \frac {2 \, \sqrt {c d x + a e} f^{2}}{c d} + \frac {4 \, {\left (c^{2} d^{2} x^{2} - a c d e x - 2 \, a^{2} e^{2}\right )} f g}{3 \, \sqrt {c d x + a e} c^{2} d^{2}} + \frac {2 \, {\left (3 \, c^{3} d^{3} x^{3} - a c^{2} d^{2} e x^{2} + 4 \, a^{2} c d e^{2} x + 8 \, a^{3} e^{3}\right )} g^{2}}{15 \, \sqrt {c d x + a e} c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(c*d*x + a*e)*f^2/(c*d) + 4/3*(c^2*d^2*x^2 - a*c*d*e*x - 2*a^2*e^2)*f*g/(sqrt(c*d*x + a*e)*c^2*d^2) + 2/
15*(3*c^3*d^3*x^3 - a*c^2*d^2*e*x^2 + 4*a^2*c*d*e^2*x + 8*a^3*e^3)*g^2/(sqrt(c*d*x + a*e)*c^3*d^3)

________________________________________________________________________________________

mupad [B]  time = 3.40, size = 142, normalized size = 0.71 \[ \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {\sqrt {d+e\,x}\,\left (16\,a^2\,e^2\,g^2-40\,a\,c\,d\,e\,f\,g+30\,c^2\,d^2\,f^2\right )}{15\,c^3\,d^3\,e}+\frac {2\,g^2\,x^2\,\sqrt {d+e\,x}}{5\,c\,d\,e}-\frac {4\,g\,x\,\left (2\,a\,e\,g-5\,c\,d\,f\right )\,\sqrt {d+e\,x}}{15\,c^2\,d^2\,e}\right )}{x+\frac {d}{e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^2*(d + e*x)^(1/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(((d + e*x)^(1/2)*(16*a^2*e^2*g^2 + 30*c^2*d^2*f^2 - 40*a*c*d*e
*f*g))/(15*c^3*d^3*e) + (2*g^2*x^2*(d + e*x)^(1/2))/(5*c*d*e) - (4*g*x*(2*a*e*g - 5*c*d*f)*(d + e*x)^(1/2))/(1
5*c^2*d^2*e)))/(x + d/e)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d + e x} \left (f + g x\right )^{2}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**2*(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)*(f + g*x)**2/sqrt((d + e*x)*(a*e + c*d*x)), x)

________________________________________________________________________________________